Properties of Radicals

$$
\begin{gathered}
\sqrt[n]{a}=a^{\frac{1}{n}} \\
a^{\frac{1}{n}} * a^{\frac{1}{n}} * a^{\frac{1}{n}} * a^{\frac{1}{n}} * a^{\frac{1}{n}} * \ldots a^{\frac{1}{n}}=\mathrm{a} \\
\mathrm{n} \text { times } \\
\mathrm{n} \text { is called the index }
\end{gathered}
$$

Without an index, one assumes the index is $2 \sqrt{a}=\sqrt[2]{a}$

$\sqrt[n]{a}=a^{\frac{1}{n}}$	$\sqrt[n]{a} * \sqrt[n]{b}=\sqrt[n]{a * b}$
$\sqrt{a}=\sqrt[2]{a}=a^{\frac{1}{2}}$	$\sqrt[n]{a * b}=\sqrt[n]{a} * \sqrt[n]{b}$ and vice versa
$\sqrt[m]{\sqrt[n]{a}}=\sqrt[m * n]{a}=a^{\frac{1}{m * n}}$	$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
$\sqrt[n]{a^{n}}=a$ if n is odd	$\sqrt[n]{a^{n}}=\|a\|$ if n is even
$\sqrt[m]{a^{n}}=a^{\frac{n}{m}}=(\sqrt[m]{a})^{n}$	$\sqrt[i n d e x]{\text { radicand }}$

