Algebra Cheat Sheet

Basic Properties & Facts

Arithmetic Operations

$$ab + ac = a(b+c)$$
 $a\left(\frac{b}{c}\right) = \frac{ab}{c}$

$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

$$\frac{a-b}{c-d} = \frac{b-a}{d-c}$$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{ab+ac}{a} = b+c, \ a \neq 0$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$$

$$a^n a^m = a^{n+m}$$

$$\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}}$$

$$\left(a^{n}\right)^{m}=a^{m}$$

$$a^0 = 1, \quad a \neq 0$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^{-n} = \frac{1}{a^n}$$

$$\frac{1}{a^{-n}} = a^n$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}}$$

$$a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^n = \left(a^n\right)^{\frac{1}{m}}$$

Properties of Radicals

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = a$$
, if n is odd

$$\sqrt[n]{a^n} = |a|$$
, if *n* is even

Properties of Inequalities

If a < b then a + c < b + c and a - c < b - c

If a < b and c > 0 then ac < bc and $\frac{a}{c} < \frac{b}{c}$

If a < b and c < 0 then ac > bc and $\frac{a}{c} > \frac{b}{c}$

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ \vdots & \text{if } a \ge 0 \end{cases}$$

$$|a| \ge 0$$

$$|-a| = |a|$$

$$|ab| = |a||b|$$

$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

Properties of Absolute Value $\begin{vmatrix} \frac{a}{c} \\ \frac{a}{b} + \frac{c}{d} \\ \frac{ad+bc}{bd} \\ \frac{a}{b} - \frac{c}{d} \\ \frac{ad-bc}{bd} \\ \frac{a+b}{c-d} = \frac{ad-bc}{bd} \\ \frac{a+b}{c-d} = \frac{ad-bc}{c-d} \\ \frac{a+b}{c-d} = \frac{a+b}{c-d} \\ \frac{a+b}{c-d} = \frac{a+b}{c-d}$ If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$a^{-n} = \frac{1}{a^{n}} \qquad \frac{1}{a^{-n}} = a^{n} \qquad i = \sqrt{-1} \qquad i^{2} = -1 \qquad \sqrt{-a} = i\sqrt{a}, \quad a \ge 0$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}} \qquad a^{\frac{a}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = \left(a^{n}\right)^{\frac{1}{m}} \qquad (a+bi) + (c+di) = a+c+(b+d)i$$

$$(a+bi) - (c+di) = a-c+(b-d)i$$

$$(a+bi)+(c+di)=a+c+(b+d)i$$

$$(a+bi)-(c+di)=a-c+(b-d)i$$

$$(a+bi)(c+di) = ac-bd+(ad+bc)i$$

$$(a+bi)(a-bi) = a^2 + b^2$$

$$|a+bi| = \sqrt{a^2 + b^2}$$
 Complex Modulus

$$\overline{(a+bi)} = a-bi$$
 Complex Conjugate

$$\overline{(a+bi)}(a+bi) = |a+bi|^2$$

Logarithms and Log Properties

Definition

 $y = \log_b x$ is equivalent to $x = b^y$

Example

$$\log_5 125 = 3$$
 because $5^3 = 125$

Special Logarithms

$$\ln x = \log_a x$$

natural log

$$\log x = \log_{10} x$$

common log

where e = 2.718281828...

Factoring and Solving

Quadratic Formula

Logarithm Properties

 $\log_b b^x = x \qquad b^{\log_b x} = x$

 $\log_b(xy) = \log_b x + \log_b y$

 $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$

 $\log_b(x^r) = r \log_b x$

 $\log_b 1 = 0$

 $\log_b b = 1$

Solve $ax^2 + bx + c = 0$, $a \ne 0$ $-b + \sqrt{b^2 - 4ac}$

The domain of $\log_b x$ is x > 0

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 - 4ac > 0$ - Two real unequal solns.

If $b^2 - 4ac = 0$ - Repeated real solution.

If $b^2 - 4ac < 0$ - Two complex solutions.

Square Root Property

If
$$x^2 = p$$
 then $x = \pm \sqrt{p}$

If $x^2 = p$ then $x = \pm \sqrt{p}$

Absolute Value Equations/Inequalities

If b is a positive number

$$|p| = b$$
 \Rightarrow $p = -b$ or $p = b$

$$|p| < b \implies -b < p < b$$

$$|p| > b$$
 \Rightarrow $p < -b$ or $p > b$

Factoring Formulas

$$x^2 - a^2 = (x+a)(x-a)$$

$$x^2 + 2ax + a^2 = (x+a)^2$$

$$x^2 - 2ax + a^2 = (x - a)^2$$

$$x^2 + (a+b)x + ab = (x+a)(x+b)$$

$$x^3 + 3ax^2 + 3a^2x + a^3 = (x+a)^3$$

$$x^3 - 3ax^2 + 3a^2x - a^3 = (x - a)^3$$

$$x^{3} + a^{3} = (x + a)(x^{2} - ax + a^{2})$$

$$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$$

$$x^{2n} - a^{2n} = (x^n - a^n)(x^n + a^n)$$

If n is odd then,

$$x^{n}-a^{n}=(x-a)(x^{n-1}+ax^{n-2}+\cdots+a^{n-1})$$

$$x^n + a^n$$

$$= (x+a)(x^{n-1}-ax^{n-2}+a^2x^{n-3}-\cdots+a^{n-1})$$

Completing the Square

Solve
$$2x^2 - 6x - 10 = 0$$

(1) Divide by the coefficient of the x^2

$$x^2 - 3x - 5 = 0$$

(2) Move the constant to the other side.

$$x^2 - 3x = 5$$

(3) Take half the coefficient of x, square it and add it to both sides

$$x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=5+\left(-\frac{3}{2}\right)^{2}=5+\frac{9}{4}=\frac{29}{4}$$

(4) Factor the left side

$$\left(x-\frac{3}{2}\right)^2 = \frac{29}{4}$$

(5) Use Square Root Property

$$x-\frac{3}{2}=\pm\sqrt{\frac{29}{4}}=\pm\frac{\sqrt{29}}{2}$$

(6) Solve for x

$$x = \frac{3}{2} \pm \frac{\sqrt{29}}{2}$$

Functions and Graphs

Constant Function

$$y = a$$
 or $f(x) = a$

Graph is a horizontal line passing through the point (0,a).

Line/Linear Function

$$y = mx + b$$
 or $f(x) = mx + b$

Graph is a line with point (0,b) and slope m.

Slope

Slope of the line containing the two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$$

Slope – intercept form

The equation of the line with slope m and y-intercept (0,b) is

$$y = mx + b$$

Point - Slope form

The equation of the line with slope m and passing through the point (x_1, y_1) is

$$y = y_1 + m(x - x_1)$$

Parabola/Quadratic Function

$$y = a(x-h)^{2} + k$$
 $f(x) = a(x-h)^{2} + k$

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at (h, k).

Parabola/Quadratic Function

$$y = ax^2 + bx + c$$
 $f(x) = ax^2 + bx + c$

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex

at
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
.

Parabola/Quadratic Function

$$x = ay^2 + by + c$$
 $g(y) = ay^2 + by + c$

The graph is a parabola that opens right if a > 0 or left if a < 0 and has a vertex

at
$$\left(g\left(-\frac{b}{2a}\right), -\frac{b}{2a}\right)$$
.

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Graph is a circle with radius r and center (h, k).

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Graph is an ellipse with center (h, k) with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$$

Graph is a hyperbola that opens left and right, has a center at (h, k), vertices a units left/right of center and asymptotes that pass through center with slope $\pm \frac{b}{a}$.

Hyperbola

$$\frac{(y-k)^2}{h^2} - \frac{(x-h)^2}{a^2} = 1$$

Graph is a hyperbola that opens up and down, has a center at (h,k), vertices b units up/down from the center and asymptotes that pass through center with slope $\pm \frac{b}{a}$.

Common Algebraic Errors

Common Algebraic Errors Descen/Connect/Instification/Evenuels			
Error	Reason/Correct/Justification/Example		
$\frac{2}{0} \neq 0$ and $\frac{2}{0} \neq 2$	Division by zero is undefined!		
$-3^2 \neq 9$	$-3^2 = -9$, $(-3)^2 = 9$ Watch parenthesis!		
$\left(x^2\right)^3 \neq x^5$	$\left(x^{2}\right)^{3} = x^{2}x^{2}x^{2} = x^{6}$		
$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$	$\frac{1}{2} = \frac{1}{1+1} \neq \frac{1}{1} + \frac{1}{1} = 2$		
$\frac{1}{x^2 + x^3} \neq x^{-2} + x^{-3}$	A more complex version of the previous error.		
á + bx	$\frac{a+bx}{a+bx} = \frac{a}{a} + \frac{bx}{a} = 1 + \frac{bx}{a}$		
$\frac{\cancel{h} + bx}{\cancel{h}} \neq 1 + bx$	a a a a Beware of incorrect canceling!		
	-a(x-1) = -ax + a		
$-a(x-1) \neq -ax-a$	Make sure you distribute the "-"!		
$\left(x+a\right)^2 \neq x^2 + a^2$	$(x+a)^2 = (x+a)(x+a) = x^2 + 2ax + a^2$		
$\sqrt{x^2 + a^2} \neq x + a$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2 + \sqrt{4^2}} = 3 + 4 = 7$		
$\sqrt{x+a} \neq \sqrt{x} + \sqrt{a}$	See previous error.		
$(x+a)^n \neq x^n + a^n \text{ and } \sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}$	More general versions of previous three errors.		
	$2(x+1)^2 = 2(x^2+2x+1) = 2x^2+4x+2$		
$2(x+1)^2 \neq (2x+2)^2$	$(2x+2)^2 = 4x^2 + 8x + 4$		
	Square first then distribute!		
$(2x+2)^2 \neq 2(x+1)^2$	See the previous example. You can not factor out a constant if there is a power on the parethesis!		
$\sqrt{-x^2 + a^2} \neq -\sqrt{x^2 + a^2}$	$\sqrt{-x^2 + a^2} = (-x^2 + a^2)^{\frac{1}{2}}$ Now see the previous error.		
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{ab}{c}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)} = \left(\frac{a}{1}\right)\left(\frac{c}{b}\right) = \frac{ac}{b}$		
$\frac{\left(\frac{a}{b}\right)}{c} \neq \frac{ac}{b}$	$\frac{\left(\frac{a}{b}\right)}{c} = \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{1}\right)} = \left(\frac{a}{b}\right)\left(\frac{1}{c}\right) = \frac{a}{bc}$		

Properties of Equality	Property	Example(s)
Addition Property of Equality	If a = b and c = d,	If $x = 2$ and $y = 3$, then
	then $a + c = b + d$	x + y = 5
		If $x = 3$ and $2 = 2$, then
		x+2=5
Sub traction Property of Equality	Ifa=bandc=d,	If $x = 5$ and $y = 12$, then
	then a - c = b - d	y- x = 7
		If $x = 14$ and $12 = 12$,
Multiplication Property of Equality	TC - 1 J	then $x - 12 = 2$ If $x = 8$ and $y = 9$, then
wondpication Property of Equanty	If a = b and c = d, then ac = bd	1 - •
	tnen ac = od	xy = 72 If x = 2 and 5 = 5, then
		5x = 10
Division Property of Equality	If $a = b$ and $c = d$? O,	If $x = 6$ and $y = 2$, then
a management	then $a/c = b/d$ and	x/y = 3 and
	ग्र्p = ८\q	х/б = y/2
		If $5x = 15$, and $5 = 5$,
		then x = 3
Reflexive Property of Equality	a=a	15 = 15
	- 177	x = x
Symmetric Property of Equality	If $a = b$, then $b = a$	If $x = 4$, then $4 = x$
T '.' D . 45 1:	• • • • • • • • • • • • • • • • • • • •	If y = 16, then 16 = y
Transitive Property of Equality	If $a = b$ and $b = c$,	If $x = y$ and $y = 12$, then
	then a = c	x = 12
		If $x = 7$ and $7 = y$, then
C-1 -Fit-Fi D.	If a = b, then either	x = y
Substitution Property	canbe substituted	If $x = y + 2$, and $y = 6$, then $x = 8$
	for the other	
	TOT THE OTHER	and $x = 7$, then
		2(7) + 7y = 35
		<u> </u>
Zero Product Property	If $ab = 0$, then $a = 0$	If $xy = 0$, then $x = 0$
	orb=0 (orboth)	$\operatorname{or} y = 0$
		If $8x = 0$, then $8 = 0$
		or $x = 0$ (thus $x = 0$)
		If $(5-y)(y) = 0$, then
		S-y=0 or $y=0$

.

FYI... Parentheses (), brackets [], and Braces {} form groups of number and these groups act like single numbers.

Property #	Name	Example
1	Commutative property of Addition	a + b = b + a a + b + c = b + a + c [(x+y)/2]+b+c=c+b+[(x+y)/2]
2	Commutative property of multiplication	a * b = b * a a * b * c = b * a * c [(x*y)/2]*b*c=c*b*[(x*y)/2]
3	Associative Property of Addition	(a + b) + c = a + (b + c) ([(x+y)/2]+b)+c=[(x+y)/2]+(b+c)
4	Associative Property of Multiplication	(a * b) * c = a * (b * c) ([(x+y)/2]*b)*c=[(x+y)/2]*(b*c)
5	Distributive Property	a * (b + c) = (b + c)*a = ab+ac $[(x+y)/2]*(b+c) = (b+c)*[(x+y)/2] = [(x+y)/2]*b+[(x+y)/2]*c$
6	Additive Identity (there is a number 0 such that)	a + 0 = 0 + a = a [(x+y)/2] + 0 = 0 + [(x+y)/2] = [(x+y)/2]
7	Multiplicative Identity (there is a number 1 such that)	a * 1 = 1 * a = a [(x+y)/2] * 1 = 1 * [(x+y)/2] = [(x+y)/2]
8	Additive Inverse (there is a number such that)	a + (-a) = (-a) + a = 0 [(x+y)/2] + (-[(x+y)/2]) = (-[(x+y)/2]) + [(x+y)/2] = 0
9	Multiplicative Inverse (there is a number such that)	$a * \left(\frac{1}{a}\right) = \left(\frac{1}{a}\right) * a = 1$ $\left(\frac{(x+y)}{2}\right) * \frac{1}{\frac{(x+y)}{2}} = \frac{1}{\frac{(x+y)}{2}} * \left(\frac{(x+y)}{2}\right) = 1 \text{ provided (x+y)/2} \neq 0$
10	Zero Property	a * 0 = 0 * a = 0 $[(x+y)/2] * 0 = 0 * [(x+y)/2] = 0$

Table of Properties

Let a, b, and c be real numbers, variables, or algebraic expressions.

(These are properties you need to know.)

	Property	Example
1.	Commutative Property of Addition $a + b = b + a$	2 + 3 = 3 + 2
2.	Commutative Property of Multiplication $a \cdot b = b \cdot a$	2 • (3) = 3 • (2)
3.	Associative Property of Addition $a + (b + c) = (a + b) + c$	2+(3+4)=(2+3)+4
4.	Associative Property of Multiplication $a \cdot (b \cdot c) = (a \cdot b) \cdot c$	2 • (3 • 4) = (2 • 3) • 4
5.	Distributive Property $a \cdot (b + c) = a \cdot b + a \cdot c$	2 • (3 + 4) = 2 • 3 + 2 • 4
6.	Additive Identity Property $a + 0 = a$	3 + 0 = 3
7.	Multiplicative Identity Property $a \cdot 1 = a$	3 • 1 = 3
8.	Additive Inverse Property $a + (-a) = 0$	3 + (-3) = 0
9.	Multiplicative Inverse Property $a \cdot \left(\frac{1}{a}\right) = 1$ Note: a cannot = 0	$3 \cdot \left(\frac{1}{3}\right) = 1$
10.	Zero Property $a \cdot 0 = 0$	5 • 0 = 0

Remember the order of Mathematical operations PEMDAS...

P	Parentheses	Perform all operations inside parentheses first
Е	Exponentiation	Then perform any Exponential operations next
Μ	Multiplication	Follow this up with any multiplication
D	Division	Next do the division
Α	Addition	Addition follows
S	Subtraction	and finally do the subtraction